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Abstract

The paper presents a mathematical model of optimal investment

in illiquid assets. Specifically, the model addresses the problem of

an investor with limited capital resources, who makes sequential

decisions on long-term investments under uncertainty as to future oppor-

tunities. The model demonstrates that such an investor will optimally

demand a higher rate of return on investments in long-term,

unmarketable assets and that the size of the premium demanded is an

increasing function of the duration of the illiquid investment.





Liquidity Preference under Uncertainty: A Model of Dynamic Investment
in Illiquid Assets

I . Introduction

The article presents a mathemetical model of liquidity

preference in an uncertain environment. The model addresses the problem

of an investor, with access to a limited pool of capital, who makes

sequential decisions on long-lasting investments, under uncertainty as

to future opportunities. Our results demonstrate that a rational

investor will, under these circumstances, demand a higher rate of

return (liquidity premium) on investments in long-lasting unmarketable assets

than on marketable ones. The liquidity premium demanded is an increasing

function of the duration of the illiquid investment.

Lumpiness and limited reversibility are important characteristics of

some types of investment decisions (particularly investments in real capital)

.

Yet, with few exceptions, financial models of optimal investment

(portfolio allocation) and the equilibrium structure of returns, rest on

the assumption that asset markets are fluid and frictionless . That is,

it is generally assumed that no transaction costs or trading indivisibilities

exist which would hamper individuals in their initial allocation of

wealth or in the free revision of their portfolios, and it is extremely

difficult to incorporate such effects (and retain analytic tractability)

into these models. For this reason, our analysis begins at a different point:

from the outset we define some investment opportunities to be illiquid,

and from there proceed to consider optimal investment criteria for such

assets (in a dynamic context ,. where accepting one illiquid investment may

cause the investor to forfeit a better one in the future).

Liquidity, in this analysis, is considered to be a time variable:

T -2>bO\ I
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the illiquidity of an asset is measured by the (probable) amount of

time the asset locks up capital, and prevents the investor from taking

advantage of new opportunities that might appear. Thus, in the

literature of asset choice, our model follows the lines of Arrow [1968],

Henry [1974], and Hirschleifer [1971]. In this paper we consider the

effect of this type of illiquidity on a binary (all-or-nothing)

investment process. In a subsequent paper, we shall consider optimal

decision rules for a portfolio of liquid and illiquid assets.

Our model differs from Hirschleifer 's in its formulation (as a

sequential decision process rather than a time-state preference model)

and from the fact that liquidity premia arise, not on account of consumer

preference for level consumption, but because of the possibility of loss

from foregone investment opportunities. We differ from Arrow and

Henry in considering, instead of permanently irreversible decisions,

choices between investments lasting varying amounts of time. We

believe a particularly useful contribution of our model is that the

formulation clearly demonstrates the dependence of the optimal decision

rule on the relative durations of investment alternatives and on the

return distribution characterizing the opportunity set: we are not aware

of such a result's existence elsewhere in the literature.

Section 2 presents basic assumptions and notation. In Section 3,

we formulate a model of sequential investment under uncertainty, deriving

optimal policies for both finite and infinite horizons. In Section 4, we

examine the dependence of the optimal decision rule and the investor's

welfare on certain parameters characterizing the dynamic process; in
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particular, we consider the effect of an exogenous shift in short-term

rates of return on investment in long-term assets. Section 5 presents

our conclusions and indicates potential lines of future research.

II. Assumptions and Notation

Investment Opportunities. In order to gain insight into the nature of

the decision process, we seek to restrict the portfolio and opportunity

state variables of our model to as few as possible, while still

conserving the basic structure of the illiquid investment problem.

Therefore, let us consider a world having two types of indivisible

assets: an "illiquid" long-term asset and a "liquid" short-term asset

the latter of which may be costlessly traded at any time. The two assets

always have a cost per unit equal to the investor's total available funds,

thus only one asset at a time may be held. The Investor has no options

other than these two assets in the allocation of his wealth; if he elects

not to Invest in the long term asset he must hold the short-term asset.

His purpose in holding these assets is to generate a stream of returns for

consumption.

In what follows, we shall consistently distinguish between "investments"

and "opportunities." Opportunities in our model are potential capital

investments, which the investor perceives, but has not yet acted upon. An

opportunity becomes an investment if and only if the investor acts to accept

it (commits resources to it).

Opportunities to make long-term investments arrive according to a
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Poisson process with characteristic frequency A; the average inter-arrival

time between opportunities is t = l/\. A long-term investment, once

purchased, matures according to a Poisson process with frequency

lj(lJ < ^) ; the average duration of a long term investment is therefore

7 = 2/y (T > t) .

Each opportunity (potential long-term investment) has a characteristic

rate of return x (expressed in dollars per unit time) , representing the

height of a level stream which the investor would receive until maturity.

Rates of return on successive opportunities are independent, identically

distributed (i.i.d.); they are drawn from a known probability density function

fix). The rate of return on a given opportunity is known to the investor at

the time the opportunity arrives and not before. The rate of return on the

liquid (short-term) asset is arbitrarily set to zero, thus x measures the

incremental rate of return on an illiquid investment , over and above what

could be obtained by investment in the liquid asset.

The rate of return x represents the rate at which income is generated

over the life of the investment. All income is consumed by the investor

as it J.s received and may not be used to increase capital available for new

investments. Capital, representing the capacity to undertake new investments,

is returned to the investor only when an investment expires (matures) and

not before. Thus capital is strictly conserved.

Discussion . The assumption that long-term opportunities mature

probabilistically (according to a Poisson process with expected duration f)

may at first appear superfluous, but is, in fact, an important feature of

the formulation. Essentially, the assumption provides a way for time to

pass within the model in a memoriless fashion (thereby avoiding the need
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to keep track of the age of any asset). We should point out, however,

that the results of the model are not restricted to this formulation. In

particular, analysis of a parallel model, in which time passes in fixed-

length intervals (interval T between arrivals of opportunity, interval T

between acceptance and maturation of an investment) yields identical

asymptotic results for the steady-state. Unfortunately, the fixed-interval

formulation is difficult to generalize to portfolio problems (involving 2

, 2
or more assets)

.

The assumptions that returns on the long-term asset are (1) certain

(after arrival) (2) realized as a continuous stream over the lifetime of

the asset and (3) necessarily consumed when received were made in order

to facilitate the direct comparison of returns (in terms of the relative

heights of two cash flow streams) on long- and short-term investments.

None of these assumptions are inherent to the formal model, which can

accommodate stochastic and irregularly timed returns on long-term invest-

ments as long as (1) the investor is able to judge the net present value

of an opportunity when it arrives and (2) for any opportunity the interval

between acceptance and the time the investor is free to make a new invest-

ment has a Poisson distribution with characteristic parameter y.

Investor's Objective Function . We will assume that the investor

seeks to maximize his total undiscounted additive dollar return over a

3
finite horizon, and his average rate of return over an infinite horizon.

4
Mathematically, the formulation permits analysis with or without discounting.

We chose to consider undiscounted returns because, by assumption, x represents

a pure consumption stream for which no alternate investment opportunities

exist. Alternative use of funds, the usual justification of discounting.



has thus been eliminated from the model; discounting in this context

would only be justified by pure time preference for consumption on the

part of the investor (a much weaker rationale). Lacking a strong justifi-

cation for discounting returns, we elected, for ease of exposition, to

concentrate on the no-discoxinting formulation: however, the reader should

note that the analysis may be extended straightforwardly to the case of

discounted returns (with a discount factor less than one)

,

Decision Process and Decision Rule . We have formulated the illiquid

opportunities investment problem in continuous time, as a semi-Markov

decision process with rewards . In problems of this type it is convenient if

the process converges over time so that optimization takes place over finite

quantities. Our procedure, therefore, is to formulate the functional equation

of the optimization problem assuming that the investor discounts future rewards

by a factor e~ (a. > 0) . We then take the limit of the functional

equation in continuous time, letting a ^ , thereby ensuring conformity

with the ergodic theorems and thus convergence of the undis counted

optimization problem. It is important to emphasize that, because we have

assumed that the investor is indifferent to the timing of returns, the

"discount rate" a is simply a mathematical construct, which vanishes

in the limit and has no significance for the economic analysis.

In analyzing the investor's decision problem, we consider maximization

of the objective function by means of a decision rule of the form: accept

opportunity x if and only if x is greater than or equal to 5 , where 5 ,

the minimum or "hurdle" rate of return is constrained to be constant, and
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is determined by the parameters \ and y, the probability distribution

function f(x) and the time t remaining before the horizon. For a finite

horizon, it has been shown that a "constant" decision rule is not strictly

optimal; the investor's optimal hurdle rate is a function of time, and

optimization involves solving for the function E,(t) which maximizes the

objective function between now and the horizon (over the finite interval

[t,0]). However, it also has been shown that as the horizon becomes long

the best constant hurdle rate converges to the truly optimal hurdle rate for

Q

the steady state.

Notation. The notation introduced above is summarized as follows:

(1) ^ —arrival time of opportunities (Poisson)

T = 1/X —average interarrival time between opportunities

(2) y —departure rate of investments (Poisson)

T = l/ii —average maturation time for one investment (T > t)

(3) X —uncertain rate of return on an illiquid opportunity/ investment

X —a realization of the random variable x:

f(x)dx = Pr[x <_x <_ X + dx]

5 —a hurdle rate in the decision process

C"* —optimal constant hurdle rate such that opportunity x is
accepted if and only if x >_ ^"^

^^) c —continuous time "discount rate" applicable to future returns
to ensure convergence (a ->

(9 in the limit)

(5) t —time remaining to the horizon (t -»- <» in the limit)

In addition to the above, we will use the following:

(6) F(V =
f

f(x)dx

oo

G(V = 2 - F(V =
\ f(x)dx



rf^) - xf(x)dx

E(x\x > V =

y(V ^ V + \G(V

We shall not hesitate to drop the functional argument of FiE,)^ G(^)j

rfg), andyfc;, writing F, G, r, and y wherever convenient.

III. Model Formulation and Analysis

Value of an Opportunity. Consider an opportunity drawn from the

distribution f(x). After it is drawn, the investor is able to assess the

present value of the cash flow stream: for the assumed discount rate a

and departure rate y, the present value of a continuous, constant stream x

to a risk-neutral investor is:

< J

-as 1xe ds ve dt = X
Woi (1)

If the investor accepts only those opportunities such that x > E,,
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then, looking forward at the future, the investor can calculate the conditionally

expected present value of an acceptable opportunity (conditional on the

decision rule: accept if x >_ E.)
',
this quantity is:

f -^ f(x)dx
g r(Z)
00

f
f(x)(h:

(m + a.)G(V
(2)

Decision Process; State Space and Decision Tree Representation. Under

the assumption of all-or-nothing investment, the investor's portfolio may

at any time be in one of two states: state ("empty") or state 1 ("full").

Let V^(t) represent the present value of starting in state with time t

left to go before the horizon, if a constant policy (based on a hurdle rate 5)

is followed. Similarly, let v^(t) represent the value of starting in state 1

with t left to go, following a constant policy. We are interested in the

sequential decision process for long or infinite horizons, therefore, it may

be assumed that the values of terminating in state or state 1 are identically

zero:

V^(0) = V^(0) = 0.

For the infinitesimal interval dt preceding time *, the investor faces

a decision problem which can be represented in tree form as follows:

If in state (empty) -

V (t + dt)

1 - Mt

Mt^^.r^

no asset arrives

1 r , -adt ,,,—— -„! e vJt)
U+a G 1

—— X = E,

'^ e-'\(t)

X arrives and is

accepted (x > ^

)

X arrives and is
rejected {x < E,)
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If in state 1 (full) -

v^(t + dt) =

1 - \idt

- adt , ,
,

- adt . ,,,
e V (t)

asset matures

asset does not mature

Discussion. The above decision trees have straightforward interpreta-

tions: nevertheless, some comments may serve to clarify subsequent analysis.

First, the reader should note that time runs backward, i.e., the investor

counts time by units left to go. Loosely speaking therefore, an investor

poised at time Zdt anticipates events and decisions which will take him to

time 2dt, subsequently to time Idt and finally to time (his horizon, the

point at which the decision process terminates)

.

The reader should also note that a reward is earned from the process

in interval dt if and only if (1) the portfolio is empty (state 0) at t + dt;

(2) a long-term investment opportunity arrives during the interval; and (3)

the rate of return clears the hurdle rate ^ so that the investor accepts

(invests in) the opportunity. According to the formulation, if an oppor-

tunity is accepted, the investor immediately (1) earns the present value of

the investment and (2) switches from portfolio state (empty)
\i + a G

to 1 (full) until the investment matures. Thus the formulation accounts for all
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rewards resulting from the acceptance of an opportunity at the time the

opportunity is accepted, rather than during the time the investor holds an

earning asset (state 1, when the portfolio is full) and actual returns are

realized.

It Is evident that, in the decisional context, state 1 serves only to

keep track of the passage of time: as long as the portfolio is full the

investor can take no action with respect to new opportunities which may

arrive. On the other hand, if the portfolio is empty (state 0) , the arrival

of an opportunity makes necessary a decision to accept or reject it. In so

deciding the investor should consider the investment's returns over its

expected life: mathematically his calculation of future benefit is taken

into account be concentrating the expected present value of the opportunity

at the instant of decision.

It must be emphasized that in making investment decisions, the investor

only looks forward to potential future opportunities, never backward at what

actually happened to his investments. Because asset lives are uncertain,

the actual returns realized by the investor may (in fact are certain to)

deviate from expectations. However, since actual returns are not reinvested,

such deviations only serve to hasten or delay the arrival of future decision

points. Regardless of such deviations in the timing, at points in time when

investment decisions arise (triggered by the arrival of a new opportunity)

,

the entire past history of the portfolio is irrelevant to the decision to

be made. Information about actual performance of the portfolio may thus be

suppressed in the formulation (thereby greatly simplifying the state-space

representation of the dynamic process)

.
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Functional Equations. The functional eqxiations for the decision process

summarized In tree form above are:

V (t + dt) = [1 - Xdt + XFdt]e~^^VQ(t)

+ [\Gdt] e""^*y,rtj + [\Qit]
"^ ^

(3a)

1 \x + 01. G

V^(t + dt) = Wdt\ e^^^^v^d) + [1 - ydt] e'^^^v^d) (3b)

If we Ignore terms of higher order than dt , then substitution of

the expanded form of e Into (3a) and (3b), and multiplication yields

v^(t + dt) = [1 - XGdt - adt]v^(t)

1 r ^^^>

+ [\Gdt]vJt) + [XGdt] ^ -^
1 y -f a G

v^(t + dt) = [vdt]v^(t) + [1 - Mdt -a dt] v^(t) (4b)

Subtracting ^ (t) from both sides of Eq. (4a) and V (t) from both

sides of Eq. (4b) , dividing through by dt, taking the limit as dt -* 0,

and then the limit as c ^ (9 obtains:

d^O^^^ ,,, . A
[- \G]vJt) + [\G]vJt) + - r

dt
~

'
' ' ' 1 y (5a)
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dv^(t)

di
= [M]VQ(t) + [-v]v^(t) (5b)

(N.B.: Analysis of discounted and undiscounted cases is identical until

we passed to the limit a -» (?, but diverges from this point on.)

Equations (5a) and (5b) describe a system of two linear, constant-

coefficient differential equations. We may write Eqs . (5a) and (5b) in

matrix notation as follows;

dt
V(t) R -h AV(t) (6)

where

V(t)

V^(t)

roJt)
< 1

R

K ^

and >1 is a 2 X 2 differential matrix of transition probabilities:

\G \G

y -y

Solution by Exponential Transform . The system described by (6) above
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8

may be solved via an exponential transform. Let E(s) denote the

exponential transform of the vector V(t) :

E(s) = ( V(t) e'^'^dt

Then the exponential transform of Eq. (6) may be taken and solved to obtain

the transformed solution (we have already assumed that the reward for

terminating in either state is identically zero)

:

E(s) (si - A)
-1 A

R (7)

Inverting (si - A) , multiplying the resultant by the scalar —— , and

expanding by partial fractions yields:

(Sl -A) = TT-
S o

S Y

( S
y \G

y \G
2 s + y

XG -\G

-y y

(8)

(recall y = \i + XG)- Substitution of Eq. (8) into Eq. (7) and application

of the inverse transform yields expressions for total expected future

values of states and 1 as functions of the parameters y and X
,

the probability density function f(x) (implicit in G, r, and y)

and the time remaining until the horizon:
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V (t) = -^
^

vJt) = ^^
1 y

^t + -^-(i- g-^*;

^t+-^(l- e^h

(9a)

(9b)

Eq. (9a) and (9h) may be analyzed to find the investor's best constant

decision rules for finite horizons; however, since such rules are known

to be suboptimal, we proceed directly to consideration of the infinite-

horizon or steady-state optimal policy.

Steady State Decision Rule. As the investor's horizon approaches

infinity, the Markov process on returns approaches a steady state. In the

steady state, the investor's expected "gain" (return per unit time) from

starting in either state (empty) or state 1 (full) must be the same.

Dividing Eqs. (9a) and (9b) through by t and taking limits as t -> <»
, it

is seen that the (1 - e ) term in each expression becomes insignificant,

thus

:

l%m

i,
-X"

7. vJt)
l%m 1

t ->*°
= g = (10)

The investor seeks to maximize his expected gain g with respect to the hurdle

rate ^ . Taking the derivative of the gain with respect to C yields:

dK 2
Y

\r - Cy (11)

The derivative dg/ds, is strictly positive if 5 = , and it is easy to
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prove (see Appendix A) that (1) there exists one and only one ^* such that

Xr - yC* = 0; and (2) for all E, > E,* , Xp - yE, < 0. Thus the investor's

gain has a unique maximum when the hurdle rate E, is

^* =^ (12)

The righthand side of Eq. (12) is simply (see Eq. (10)) the rate of return

(per unit time) the investor may expect on average upon application of the

optimal decision rule "accept opportunity ^ if and only if x >_ Z* ." Not

surprisingly, in a steady state environment, the investor's expected gain

attains a maximum at the point where marginal (hurdle) and average rates

of return are equal.

The optimal hurdle rate 5* is strictly greater than zero for all

^ > (? , as long as the probability of encountering opportunities having

rates of return greater than zero is positive. C* is the minimum rate

of return the investor should optimally demand to commit his wealth to a

long-term (illiquid) investment. Since the rate of return on alternative

short-term investments has been scaled to zero, 5 "* should be interpreted as

a liquidity premium ; that is, as an excess rate of return which must be

earned on long-term unmarketable assets in order to compensate the investor

for the opportunity loss of foregoing possibly more attractive investments

during the time his capital is locked up.

Finite Horizon Decision Rule. We now consider the dependence of optimal

hurdle rates on the time remaining to the horizon. Referring back to the

original decision tree formulation, define V*(t) as the expected value of startii
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in state with time t left to go if a truly optimal (non-constant)

policy is followed. Similarly, define V-'^(t) as the value of starting

in state 1 with t left to go, following an optimal policy. Substituting

Vg^d) and V *(t) for ^q('^^ and v^(t) in the decision tree and

functional equations (3a) and (3b), it is evident that all derivations

and observations with respect to '^n^^^ and ^^1^/ are obtained identically

for v^*(t) and V *(t) , in particular we obtain the equation system:

w) {'i-^'W'' * M":'«^ * r
do *(t)

-|^ = ^J^. \ r-XG]v.*(t) + \\G]v.'^(t) ^ ^v \ (13a)

dv*(t)—^T = [p] v,*(t) + [-uly/rt; (13b)
at 1

describing the optimization at time t of the Markov process in continuous

time. Note, however, that optimization now takes place with respect to

the function i(t) governing hurdle rates over the time remaining to the horizon.

In Appendix B, it is shown that the optimal instantaneous hurdle rate

applicable at time t (the hurdle rate function) satisfies:

K'(t) = " ^^V' = o.(in' (1^)

where r\ y*, and 5* are optimal values of ^, Y , and g in the steady state

and a (t) is a monotonically increasing concave function of t such that

<_ a (t) ^ 1 . From (14) it is evident that with respect to time,

K * ft J behaves like a(th that is, optimal hurdle rates are small (near ^ )

for very short horizons, but increase at a decreasing rate as the investor's
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horizon lengthens. Naturally, as the horizon becomes infinite, optimal

hurdle rates approach asymptotically the constant (steady state) optimal

hurdle rate 5* derived in the previous section.

II. Comparative Statics

Dependence of g^ and g on t and T . In this section we consider how the opti

hurdle rate ^* and investor's welfare (measured by his average gain g) are.

affected by changes in the process parameters t (interarrival time between

opportunities) and T (average duration of long-term investments). Our

analysis is limited to the infinite horizon (steady state) decision process,

but the results extend to finite horizon processes as well.

In Equation (12) above, the optimal (steady state) hurdle rate ^*

shown to be an implicit function of T and T, as well as the return dis-

tribution f(x). Equation (12) may be re-stated as:

- c. .
' <^^'>

T

It is straightforward to show that |- - (7 is a monotonically decreasing

function of C; the RHS of (12') is constant. Thus, as Figure 1 indicates,

the optimal ^* is uniquely determined by the intersection of | - (7 and -
.
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Figure 1
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Looking at Figure 1, it is evident that raising T or lowering T raises the

intersection point, thus lowers the optimal hurdle rate ^* ; conversely,

lowering T or raising T raises the optimal ^* . In Equations (10) and (12)

above it was shown that, at the optimum, the investor's hurdle rate ^*

equals the average (expected) gain g; thus raising T or lowering T makes

the investor better off , whereas lowering T or raising x makes him worse off .

Hurdle Rates as a Function of Asset Duration . We have just shown that,

all other things equal, optimal hurdle rates are an increasing function of T,

the expected duration of a long-term investment. Optimization within the il-

liquid opportunities process thus determines a functional relationship between

necessary rates of return and the (expected) duration of investments. The

relationship indicates that rational investors demand higher returns on un-

marketable assets of longer duration.

Although the functional relation between rate of return and duration

is broadly consistent with a "liquidity preference" hypothesis, the function

E.'^iT) which specifies the relation between required rate of return and

maturity, is not equivalent to the term structure of interest rates which

would be observed in the capital markets. In the first place, E,*(T) is not

a directly observable function. The hurdle rate E,* (for T given) is only a

lower bound defining a minimally acceptable rate of return on unmarketable

investments of average duration T; rates of return on actual investments

made under this decision rule could have any value above ^ (within the

domain of f(x)). A second and more subtle difference between
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^*(T) and a market term structure equation, is that it is not an indifference

relation : the equality of E,* and g implies that the investor is better

off for higher E,* and T. Equilibrium in the term structure can occur

only if a representative investor would be indifferent between alternatives

of different maturities. It therefore makes sense to ask: What changes in

the rate of return and/or interarrival distributions would cause an

investor, on average , to be indifferent to sampling opportunities from

among different maturity classes? Such a line of inquiry lies outside the

scope of this research, but appears promising for the future development

of a theory of equilibrium term structure in real capital markets with little

or no secondary trading.

Impact of Short-Term Rates on Long-Term Investment. We conclude by

considering the effect of an exogenous rise in short-term (market) rates of

return on "real" investment (i.e. irreversible physical capital and/or

long-lasting projects).

Let E,Q* be the hurdle rate (liquidity premium) applicable to an illiquid

investment opportunity of expected duration T for a known market rate Z .

Let Cr* be the hurdle rate (liquidity premium) applicable to the same illiquid

opportunity given market rate Z -f 6 . From Equation (12) above, it is known

that:
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(Optimization is understood, thus stars (*) have been suppressed except

for the hurdle rate Kq*-)

We can solve for the hurdle rate £;.* by rescaling returns x by 6 :

' x' = X - S , (16)

and applying Equation (12) to the transformed problem: (primes denote

quantities rescaled according to (16)):

r ;«' = XH. . (17)

Reverse transformation of (17) obtains E, * in units comparable to (15)

Tr + T($

'6 TG+ T ''
"^05/ = ^F?-r-r~ > ^0* • (18)

Comparing (18) to (15) , it is evident that an exogenous rise in "short"

or "market" rates of return raises the absolute hurdle rate on new long-term

investments. Figure 2 illustrates the change in hurdle rates for assets

with maturities ranging from to T .
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hurdle
rate Figure 2
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Given an unchanging opportunity set, a rise in the short rate from

Z to Z -/ 6 will cause a corresponding (but less than proportional) rise

Tr Tr + t6
of the long (hurdle) rate from Z + mn , - to Z -f mn , ^ • An increased

hurdle rate implies that the investor optimally accepts fewer long-term

opportunities. The model thus supports the Keynesian hypothesis: ceteris

paribus higher rates of return on short-term financial instruments dis-

courage entrepreneurial investment in new, long-term productive opportunities.

IV. Conclusion.

The illiquid opportunities model, described and analyzed above,

addresses the problem of an investor, with limited capital (or limited

access to capital markets), who makes sequential decisions on long-lasting

investments under uncertainty as to future opportunities. The model was

mathematically formulated as a continuous-time Markov decision process with

rewards. Specific restrictive assumptions necessary to the formulation

included (1) a linear, additive-separable investor's utility function over

time; (2) investment opportunities of a standard frequency and duration drawn

independently from a known stationary distribution f(x); and (3) indivisible

investment of all or none of the investor's wealth in any opportunity. Under

these simplified assumptions we explored (1) conditions under which it is

rational for an investor to prefer liquid investments and to demand extra

return (a "liquidity premium") on long- lasting Illiquid investments, and

(2) functional characteristics of the liquidity premia demanded. We were

able to show, in the context of the model, that an investor facing sequential

opportunities to make long-lasting investments will optimally demand of such

investments positive liquidity premia which are an increasing function of their

(probable) duration.
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The model appears to open numerous lines of future research. In the

first place, the formulation, although attractive in that its analytic

results are tractable and intuitive, is unnecessarily restrictive. In

particular, the assumption that the representative investor is limited

to all-or-nothing investment policies may be relaxed: generalization of

the "illiquid opportunities" model to the portfolio context will be treated

in a subsequent article.

Further interesting questions arise if the representative investor

is considered as a social aggregate. Society as a whole has at any time

limited resources available to invest in new opportunities; of these oppor-

tunities, certain investmenst in productive assets or infrastructure changes

generally return their value over a relatively long period of time. Thus,

both centrally planned and free market economies face the problem which our

model poses: in allocating resources between short- and long-term real in-

vestments (tangible assets and productive technology) , the benefits of a

current opportunity must always be balanced against potential future losses

from foregone or delayed opportunities. In this context, work along the

lines described in Section 4 above may provide a characterization of term

structure equilibrium based on dynamic aspects of the real capital investment

process.

In conclusion, the general problem of liquidity relates

to both transaction time and transaction cost , and realistically involves

interdependence between the two. The "illiquid opportunities" model

presented here considers only temporal aspects of liquidity

preference. Despite its inherent limitations, it is



- 26 -

hoped that the model's results offer insight into the concept of liquidity

as well as into the general principles by which rational investors may

decide to commit resources to irreversible investments.
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Appendix A

Existence of a Unique C* (Optimal Steady State Hurdle Rate).

Theorem. (1) For given A
, p (both positive) and probability

density function f(^) [defined on ((5,°°)], there exists one and only one I*

(with associated values of ^*

,

(?*, y*) such that

(2) For all C > ?*
:,

Ar - yC < .

Proof. At 5 = ^

\r - Y? = A \ X fix) dx - > . (A-1)

AsC-^ °°j ^r ^ 0, y-^Uj thus

Ar - yC = -°° < ^ .
VA ^;

However, Ar - y? is strictly decreasing, since the derivative of \v - y?

with respect to ? is always negative:

^ (Xr - y^) = -Xf(E,)g + \f(^)^ - y = -y < . (A-3)
8?

Therefore, Ar - y^ = for exactly one E,* on ((?,") and .\r - yE, <

for all C > ?
'^

.



>
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Appendix B

Analysis of Finite Horizon Hurdle Rates

In this appendix we consider the behavior of optimal (non-constant)

hurdle rates, when the time remaining to the horizon is finite. The two

lemmas which follow are necessary for our analysis of the optimal hurdle

rate function E,*(t) .

Lemma 1. The function V^*(t) - V*(t) is a positive, monotonically increasing

function of t on the interval (^,a>).

Proof . Let ^j.* = arg max ^^^^C^ "^ <^*) • We may then take the difference

of the recursive equations (4a) and (4b)

:

v*(t + dt) - v*(t + dt) = [1 - \G{E,*)dt- Mdt - a.dt][v *(t) -

1 ^

Xr(z *)dt

y/rt;] + 1 . (B-1)
1 y + a

Note that optimization is implicit for (?(•) and 2^»).

Consider the process with one instant left to go. Recall that, by

assumption zx *(^) = V *(0) =>. 0, and H*) and (?(•) are positive for all 5, thus:

It(^ *)dt

v^*(dt) - v^*(dt) = ^l ^
> v^*(0) - v^*(0) = 0. (B-2)

Now consider the process with two instants left to go. Substituting
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2from (B-2) into (B-1) and ignoring terms of order [dt] or higher

we obtain:

V *(2dt) - v*(2dt) = [r(z*)dt + r(z*)dt] (B-3)

> v^^(dt) - v^*(dt) .

By successive substitution into the recursion equation (always ignoring terms

of higher order than dt) we obtain for the process with m+1 instants left

to go:

^*[(m + Vdt] - v.H(m + Ddt] = -^— [r(E,*)dt + (B-4)
(_/ ^ LA I \J^ til

r(E.* Jdt + . . . + r(^*)dt]
m~l

From (B-4) it is obvious that V* - V * is (1) positive and (2) strictly

increasing for all m (therefore t) on the interval ((?,<»).

Lemma 2 . Let r* and Q*^ respectively denote functions r and G evaluated for

the optimal steady state hurdle rate E,* (see Eq. 12). Then:

t-x» I y 0^

Proof . In the steady state, marginal returns to the "v* process" must equal

the (per period) gain from following the optimal constant policy:



- 30 -

-. dv.*(t)

dt

.. v.(t)
max Ivm i

= g' = i = Oy 1
(B-f

Note: g* and y* denote g and y evaluated at 5*.

But dv .*/dt must also satisfy differential equations (13a) and (13b),

in the limit as t -» °° for the constant optimal policy E,* = E,(t) :

lim ^^/^*^ tim
*->«' dt t->- 00

\G*[v*(t) - v*(t)] + -r*]
(B-6a)

lim fV^ _ tim
t ^°° dt t ->-oo

V[v^*(t) - v^*(t)]
(B-6b)

Substituting from (B-5) into the LHS of (B-6a) or (B-6b) and rearranging

allows us to deduce the limiting value of v*(t) - V ^ (t)
;

/i>/^^^ -^i'^^^^=w
(B-7)

[Recall that G* and r* appear as "constants" in (B-6a) and (B-6b) , thus are

not affected by the limit passage in t] . Q.E.D.
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We are now equipped to characterize optimal finite-horizon hurdle

rates (the function E,'^(t) ) by the following:

Theorem. In the illiquid opportunities process, with time t left to go, the

optimal hurdle rate E,*(t)j applicable to new investment opportunities, satisfies;

where C* is the optimal steady state hurdle rate, and a(t) is a monotonically

increasing, concave function of t such that _< a(t) < 2 , v te ((?,«>).

Proof. From Lemmas 1 and 2, we have that V *(t) - v *(t) is a

monotonically increasing function of t which approaches a finite upper

bound as t -> <=° . Therefore,

we may scale values of the function, for finite values of t :

V*(t) - V*(t) = aft) \ , (B-8)
1 MY

where a(t) is (for now) a monotonically increasing function of t whose range

is (.0,1)'

Substituting for y '^ - u * in Eq. (13a), and carrying out the maximization,

we have:

^*(t) = '^^'^iY* = a(t)K* . (B-9)

That a(t) and Z^d) are both concave functions of t may be seen from

Eqs. (B-4), (B-8), and (B-9). Eq. (B-9) implies for Eq . (B-4) that ^* > C'* _,,

thus p(K* ) < i'f?'* ^) . This result indicates that increments to y,"* - v^*
m m-1 1'

are decreasing as m(therefore t) increases. Thus y '^ - v * is concave in t, therefore

[from (B-8) and (B-9)] a.(t) and K(t) are. also concave in t. Q.E.D.



- 32 -

Footnotes

This work was in part supported by a fellowship grant from the American

Association of University Women. We are grateful to John Lintner, Roy Shapiro,

Warren Oksman, Richard Grinold, Mark Rubinstein, Fischer Black, Robert Merton,

Franco Modigliani, and Stewart Myers for comments on this and earlier drafts

of this paper. Any mistakes are, of course, our own.

(1) Some researchers have preferred to define liquidity in terms of

tranaction costs and/or liquidation penalties. In the context of

single-period Capital Asset Pricing Model, Chen, Kim and Kon [19 75]

derived investor demand functions and equilibrium asset valuation

formulae for the case where investors experience random, end-of-period

cash demands, and incur proportional liquidation costs on the sale of risky

assets. Using a stochastic control formulation, Magill and Constantinides

[1976] obtained dynamic portfolio selection rules for an investor who

incurs proportional tranactions costs on purchases and sales of securities.

A somewhat different approach is that of Goldman [1974, 1978]; he considers

the case in which an isolated investor allocates his portfolio among bonds

whose interest rates and value on liquidation before maturity are

inversely related, and shows that given uncertainty about future interim

consumption needs, the consumer optimally holds a diversified portfolio.

Tobin [1958] has proposed that liquidity be defined as a functional relation-

ship between transactions cost and the time necessary to convert an asset

into cash.

(2) In addition to simplifying the model's formulation, the assumption of

uncertain duration, we believe, reflects uncertainty which actually

exists about the anticipated useful life of many tangible and intangible

long-term assets. For example, a corporation or entrepreneur, introducing

a new product, is never perfectly certain of the product's life expectancy;

only the probable duration of its lifespan is knovm when the investment is made.
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(3) The theoretical limitations of an objective function which is additive

in time are quite severe; Meyer's [1976] research into the mathematical

structure of time preference seems to indicate that (individual or corporate)

preferences with respect to time cannot be adequately represented as the sum

of discounted returns or even as the sum of additively-separable single-period

utilities (the most common intertemporal utility function found in the economic

literature). Despite prior recognition of the deficiencies of the objective

fimction, we include it in the formulation; redefinition of x in terms of

utility rates of return allows the model to encompass additive separable

utility functions.

(4) In a private communication Richard Grinold has provided us with an

analysis of the case where the investor discounts future returns.

(5) Cf. A. Veinott [1969].

(6) Cf. D. Blackwell [1962]; Sheldon Ross [1970] pp. 162-163.

(7) However, a takes on economic significance if we assume the investor's

rate of time preference (a) to be the same as the market opportunity

rate (currently not specified). In this case the rate earned on short-term

investments would be a; a + x would be earned on long-term investments.

Formulation of the illiquid investment problem under these assumptions

would be identical to that shown except for passage to the limit in a.

(8) Cf. Blackwell [1962]; Jeremy Shapiro [1968].

(9) Cf. Howard [1972], Vol. II, pp. 797 ff

.
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